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We generalize the Gel 'fand-Dorfman theorem to Poisson manifolds using the 
cohomological conditions. We find conditions to construct some compatible 
Poisson structures (exact cocycle type) suited to the needs of the theorem. Exact 
Poisson structures on vector spaces are also studied. We prove that every 
Lie-Poisson structure is exact. 

1. INTRODUCTION 

The purpose of this article is to find a technical tool to construct some 
functions in involution on the phase space of a mechanical system endowed 
with a pair of compatible Hamiltonian structures (or equivalently bi-Hamilto- 
nian structure). Gel'land and Dorfman (1979) proved an involution theorem 
on symplectic pairs on a manifold and later (Gel'fand and Dorfman, 1980) 
generalized it to Poisson pairs. Their generalization needs a certain factor 
space of differential one-forms to be trivial. In this article we generalize the 
Gel 'fand-Dorfman theorem to Poisson manifolds using the Poisson cohomol- 
ogy spaces. 

Later we discuss Poisson pairs satisfying the hypothesis of the above 
theorem. To construct such pairs, we consider a Poisson manifold and study 
exact 2-cocycles of the Poisson cohomology. Under certain conditions, they 
form Poisson pairs with the original structure and satisfy the hypothesis. We 
apply the above constructions to finite-dimensional vector space endowed 
with a Poisson structure. As an offshoot of this study we have observed that 
the exact 2-cocycle of the Poisson cohomology formed by the dilation vector 
field on a Lie-Poisson manifold (i.e., on the dual of a Lie algebra) gives 
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rise to the Lie-Poisson structure itself. In other words, every Lie-Poisson 
structure is exact with the dilation vector field on the manifold. 

2. GENERALIZED GEL'FAND-DORFMAN THEOREM 

Let (M, P) be a Poisson manifold (Bhaskara and Viswanath, 1988b; 
Libermann and Marle, 1987) and let us denote the Poisson bracket of P by 
{., .}p. Let P#: f~l(M) ---> • be the map defined by P#(c0([3) = P(a,  13) 
for all oL, [3 E fII(M). [The notation, unless otherwise stated, is taken from 
Abraham and Marsden (1978).] We extend this map to any p-form on M and 
call it also P#, that is, for r ~ OP(M) we have 

P#oJ(ot 1 . . . . .  Otp) = o}(P#o/.1 . . . . .  PgOLp) 

for oLi ~ l-ll(M) and P#(f)  = f f o r  a l l f  ~ C=(M). 
There exists a Lie bracket on l l  I(M) (Bhaskara and Viswanath, 1988a). 

We denote this bracket also by {., �9 }p. The Poisson cohomology operator 
on multivector fields on M is denoted by Oe (Bhaskara and Viswanath, 1988a). 
If Q is any other Poisson tensor, then aP + bQ is again a Poisson tensor if 
and only if [P, Q] = 0, for a, b ~ R, where [., .] is the Schouten bracket 
(Bhaskara and Viswanath, 1988b). In such a case (P, Q) is called a Poisson 
pair (or pair of compatible Poisson structures) and the triplet (M, P, Q) is 
called a bi-Hamiltonian manifold. 

Remark 1. (a) [P#e~, P#13] = P#{o~, [3}p Ve~, 13 ~ ~-~l(m) (Bhaskara and 
Viswanath, 1988a). 

(b) P#dto = -OpP#to VoJ ~ ~P(M), for p = 0 . . . . .  n (Bhaskara and 
Viswanath, 1988b). 

(c) {., "}P+o = {', "}e + {', "}Q (Bhaskara and Viswanath, 1988a). 

Lemma. Suppose (M, P, Q) is a bi-Hamiltonian manifold and a, [3, -y 
E ~ l (M)  satisfying Q#(13) = P#(e0 and Q#('u = P#([3). Then for any 6, ~l 

I-I1(M) we have 

d~/(Q#(~), Q#('q)) - d13(Q'~(~), P~('q)) - d13(P~(~), Q*(qq)) 
+ da(P~(~), P~(qq)) = 0 

Proof Using formula (6) in Table 2.4-1 on p. 121 of Abraham and 
Marsden (1978) and the hypothesis, we can write the left-hand side of the 
above equation as 

_~([Q~(~), Qe(.q)]) + 13([Q#(~), p~(.q)]) + 13([p#(~), Qe(.q)]) 
- ~ ( [ p * ( ~ ) , / ~ ( ~ ) 1 )  

Note that 
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(P + Q)#({~, "q}p+o)([3) = Pg({~, qq}e)([3) + Q~({~, ~q}Q)([3) 

+ Q#({~, qq}p)([3) + P~({~, ~q}Q)([3) 

On the other hand, we have 

(P + Q)#({~, "q}p+o)([3) = [P~(~) + Q#(~),/~('q) + Q#(qq)]([3) 

= [P~(~), Pg('q)]([3) + [P*(~), Q#('q)]([3) 

+ [Q#(~), P~('q)]([3) + [Q#(~), Q#('q)]([3) 

Therefore we have that 

[P~(~), Pg(-q)](]3) + [Pg(~), Q#('q)]([3) - Q#({~, "q}p)([3) - Pg({~, "q}o)([3) 

is equal to zero. This implies, by the hypothesis, that 

-7([Q#(~), Q#('q)l) + [3([Q#(~), Pg(Tq)]) + [3([P*(~), Q#('q)]) 
- a ( [ W ( ~ ) ,  P*(-q)])  

is equal to zero. 

Theorem. Let (M, P, Q) be a bi-Hamiltonian manifold such that the first 
0o-cohomology group is trivial and Im P# C Im Q#. Letf0,fl ~ C'(M) such 
that Q#(dfl)  = P#(dfo). Then: 

(1) There exists a sequence of smooth functions f0, fl, f2 . . . .  such that 

Q#(df~+O = Pg(df) ,  i = O, 1, 2 . . . .  

(2) A l l f  are in involution with respect to {-, -}p and {-, "}o. 

P r o o f  (1) The proof is by induction. We construct the first step. A 
similar construction at every step gives the sequence. Let ~ = dfo, ~ = d fv  
Take a nonzero "y ~ Q # - l ( p # ( ~ ) ) .  This is possible because Im P# C Im Q#. 
Using the lemma, we see that d'y(Q#(~), Q#('q)) = 0 V~, "q ~ ~ I(M). That 
is, Q# d~/ = 0 ~ -OQQ('v) = 0. Therefore there exists gz ~ C'(M) such 
that Q#(~) = Oo.gz since the first cohomology group is trivial. Therefore 
Q#(V) = OQg2 = OQQ#(g2) = -Q#(dg2 )  = Q#(df2), where f2 = -gz .  A 
succession of this procedure leads to a sequence of functions which satis- 
fies (1). 

(2) For i, j (i > j) ,  

{ f ,  fj}Q = Q#(df)(df . )  = P*(d f - l ) (d f j )  = -P~(df j ) (df ._ , )  

= -Q#(d f j+ l ) (d f -1 )  = Q#(df . -1)(df j+l)= {f/-l,fj+l}o 

Depending on whether i - j is even or odd, we arrive either at {j~, j~}Q = 
0 or at {j~+~, fi}Q ---- Q#(df+O(dft) -= P#(dft)(dft) = O. 
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One can prove, in a similar way, that thef~ are in involution with respect 
to {', "}e. 

The above lemma and the theorem are generalizations of Theorems 3.3 
and 3.4 of Gel 'fand and Dorfman (1979). Gel'fand and Dorfman proved 
them for symplectic structures and later generalized them to Poisson structures 
(the nomenclature is different there). In their generalization they need a 
certain factor space of differential 1-forms to be trivial. In our Poisson version 
we brought the Poisson cohomology into the picture, which sounds natural. 
One can see that our proof of the lemma, which is very crucial in constructing 
functions, is global geometric and the proof of the theorem goes along the 
same lines as theirs (Gel'fand and Dorfman, 1979, 1980). However, in the 
Poisson version one can find that it may be possible to have several sequences 
of functions in involution because at every step of induction there is a 
possibility to have several branchings by choosing each time a different 
nonzero element from (Q#-IP#)([5). 

Examples. (1) Consider M = so(3, R)* and Q as the Lie-Poisson 
structure. Suppose X~, X2, X3 is the basis such that 

[X1, X2] = X3, IX2, X3] = Xl, [g3, Xl] = X 2 

Let x~, xz, x3 be the coordinate system on M defined by the basis. Consider 
R = X1 ^ X2, a unitary solution of the classical Yang-Baxter equation on 
so(3, R). Then ad(XO ^ ad(X2) defines a homogeneous quadratic Poisson 
structure on M (Bhaskara and Rama, 1991). Let us call this Poisson structure 
P. Since ad is a Lie algebra derivation P commutes with the Lie-Poisson 
structure Q (Bhaskara and Rama, 1991). A straightforward verification shows 
that P is determined by the following relations: 

{Xl, X2}p = X 2, {X2, X3}p -~- XIX3, {X3, XlIP ~- X2X3 

and 

[POl = x3[Q #1 

where [.] denotes the matrix of the tensor map inside. Since x3 = 0 gives 
the set of all singularities of P, we get Im P# = Im Q#. Moreover, the first 
cohomology group of the Poisson manifold (M, Q) is trivial. Hence the 
theorem is applicable in this case. 

(2) Consider M = sl(2, R)* and Q as the Lie-Poisson structure. Suppose 
H, X, Y is the basis such that 

[H, X] = 2X, [H, Y] = -2Y, [X, Y] = H 

Let h, x, y be the coordinate system on M defined by the basis. Consider R 
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= H ^ X, a unitary solution of the classical Yang-Baxter equation on s/(2, 
R). Then ad(H) ^ ad(X) defines a homogeneous quadratic Poisson structure 
on M (Bhaskara and Rama, 1991). Let us call this Poisson structure P. Since 
ad is a Lie algebra derivation P commutes with the Lie-Poisson structure 
Q (Bhaskara and Rama, 1991). A straightforward verification shows that P 
is determined by the following relations: 

{x, Y}e = 2yh, {y, h}p = -xh,  

and 

[P~ = 2x[Q ~] 

{h, X}p = 2h 2 

where [.] denotes the matrix of the tensor map inside. Since x = 0 gives the 
set of all singularities of P, we get Im P# = I m  Q#. Moreover, the first 
cohomology group of the Poisson manifold (M, Q) is trivial. Hence the 
theorem is applicable in this case also. 

(3) If  we consider M to be any symplectic manifold whose first de- 
Rham cohomology group is trivial and Q to be any Poisson structure, then 
the theorem is applicable, for example, to an affine Poisson structure on an 
even-dimensional Lie algebra constructed with a nondegenerate 2-cocycle 
(Bhaskara, 1990). 

The rest of the article is devoted to studying the hypothesis of the above 
theorem. The idea is to find some ways to produce bi-Hamiltonian manifolds 
with the required properties. The nature of the constructions being algebraic, 
we use Poisson algebras and multiderivations in the next section. 

3. SOME COMPATIBLE POISSON STRUCTURES 

Finding compatible Poisson structures is a usual practice. Here we give 
a construction suited to our needs. It is clear that if we have a Poisson 
structure Q and a vector field X such that aQX is a Poisson structure (preferably 
different from Q), then they are naturally compatible. In this section we find 
some possibilities of OQX becoming a Poisson structure. We also study the 
Poisson structures which are exact in their own cohomology. There are plenty 
of examples of both types. 

Let (~/, Q) be a Poisson algebra. That is, Q is an alternating 2-derivation 
on ~ / such  that [Q, Q] -- 0 where [-, .] is the Schouten bracket (Bhaskara 
and Viswanath, 1988b). Let us denote by aQ the Lichnerowicz-Poisson coho- 
mology operator (Lichnerowicz, 1977) on alternating multiderivations on ~/. 
We write Q(f, g) = {f, g}Q. Sometimes we also call (~ ,  {., .}a) a Poisson 
algebra. The typical example in mind is that ~ = C=(M) for some Poisson 
manifold (M, Q). 
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Remark 2. For any f, g ~ ~ and a 1-derivation X on ~ ,  the following hold: 

(a) OQX(f, g) = {f, X(g)}Q -- {g, X(f)}Q -- X({f,  g}Q)_ 
(b) The Hamiltonian vector field X~ o f f  is given by X~(g) = {g, f}Q. 

In other words, OQf = ifQ = - X  Q, where ifQ(g) = Q(f, g) for all g (Bhaskara 
and Viswanath, 1988b). 

Q is called exact if OQX = Q for some 1-derivation X on ~/. An example 
of  an exact Poisson structure is the following: consider ~ = C=(R 3) with 
coordinates x, y, z on R 3. Let the Poisson structure Q be determined by the 
following relations: 

{x,y}Q = 1, {y, Z} O = O, {Z, x}Q = 0 

For X = x O/Ox we have OQX = Q. 
Sometimes OQX can be a different Poisson structure. We call it an exact 

cocycle Poisson structure. A simple example of such a structure can be 
obtained by taking X = O/Oz with the above Poisson structure. Note that OQX 
need not be a Poisson structure always. For example, consider ~/ = C~(R 3) 
with coordinates x, y, z on R 3. Let the Poisson structure Q be determined by 
the following relations: 

{x, Y}o = 2yz, {y, z} O = -xz ,  {z, x} e = 2z 2 

It can be verified that for X = O/Oz, OQX is not a Poisson structure. 
If P is another Poisson structure on .~/, then we say both the structures 

are compatible if [P, Q] = 0. Since 0~ = 0, if OQX is a Poisson structure, 
then it is automatically compatible with P. In the following paragraphs we 
study the conditions for the existence of exact cocycle Poisson structures 
and some of their properties. 

Proposition 1. Let (~/, Q) be a Poisson algebra and let X be a 1-derivation 
on ~ / such  that [X, [X, Q]] = 0. Then OQX is a Poisson structure. 

Proof Easy. 

Example. Suppose ~ is a finite-dimensional Lie algebra and q3* is its 
dual. If we can identify ~3"* with q3, then the Lie-Poisson structure Q can 
be defined. That means (C=(q3*), Q) is a Poisson algebra. Let X1 . . . . .  Xn 
be a basis of ~3 and let x~ . . . . .  xn be the coordinate system defined by X1, 
. . . .  X, on ~3". The Lie-Poisson structure is defined by 

{Xi, Xj}Q = ~ Ckxk 
i,j,k 

where C~ are the structure constants of the Lie algebra with respect to the 
basis under consideration. 
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Now take any vector field A on ~* with constant coefficients. Then [A, 
[.4, Q]] = 0. Indeed, if A = ~l al O/Oxl for at ~ R, then 

[.4, [A, Q]](xi, xj)(t*) = LALAQ(xi, xj)(p~) 

ddds , = s = 0  
- Q(x~, xj)(~z + te~ + sc~) 

= 0  

where a is treated as a vector in ~*  with coordinates a~ . . . . .  a,. Therefore, 
by Proposition 1, OQA is a Poisson structure. 

f ~ ,~ is called a Casimir element of Q if {f, g}o = 0 for all g E ,~. 
The space of all Casimir elements of ,~ is denoted by ~o.  By Remark 2(a), 
the following is true. 

Proposition 2. Let (~ ,  Q) be a Poisson algebra. Suppose P = OQX is 
another Poisson structure on ,~. Then: 

l. {f, g}p : 0 for all f, g ~ (~Q. 
2. Xff = XxO00 for all f E q~Q. 

Proposition 3. Let (a/, Q) be a Poisson algebra and let X be a 1-derivation 
on a~ such that [X, Xf o] = 0 for all f ~ a~. Write OQX = P. Then P is a 
Poisson structure and lm P# C Im Q#. 

Proof Since XX a = x Q x  for any f,  once again by Remark 2(a), we get 

{f, X(g)} o = - { g ,  X(f)} O = X({f,  g}o) = {f, g}P 

Now, it is easy to prove the Jacobi identity for {., "}e. We have Im P# C 
Im Q# because P#(df) = Q#(d(Xf)) for all f E ,~/. 

Proposition 4. Let (,~, Q) be a Poisson algebra. Q -- ooX for some 1- 
derivation X on ~ if and only if [X, X Q] = XxQff) - X Q for all f ~ ,~. 

Proof Note that, by Remark 2(a), we have 

OQX(f, g) = -xQX(g)  - xQq)(g) + XX~(g) 

= [X, X)2](g) - XQxo(g) 

Now, if OQX = Q, then it is easy to see that [X, X?] = XxO(f) - Xr 0. On the 
other hand, by the generalized Jacobi identity (Bhaskara and Viswanath, 
1988b), we have 

[[O, X],f]  + [[X, f l ,  Q] + [[f, Q], X] = 0 
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which implies that 

ifOoX = --XQ~ + [X, X f  ~ 

since 0r = - [Q,  X]. When [X, X~] = Xx~ - Xf Q, we have i:OoX = i/Q 
for all f. Hence the proposition is true. 

4. EXACT COCYCLE POISSON STRUCTURES ON VECTOR 
SPACES 

Let V be a vector space with a coordinate system x 1 . . . . .  x n. Suppose 

Q 
�9 . Qov , , , |  Oxj 

is a Poisson structure on V. 
(A) We now study the hypothesis of Proposition 3 in this case. Assume 

that X= "Zl Fl OlOxl, where Ft �9 C=(V). 
For a n y f  �9 Ca(V) the Hamiltonian vector field of f is given by 

x f  = - .  Q~: ox, oxj 

Note that 

Therefore 

If IX, X Q] = O, we have 

o__ x~ = - E  a~J 
Oxj J 

~ Fl 02f 
iJ ~ Qij = 0 

for all j, from which one concludes that 

FiQjk + FjQik = 0 

for all i, j, k. Therefore if X = 2il Ft 010xl satisfies the above equation, then 
0QX (= P say) is a Poisson structure and Im P# C Im Q#. 

(B) The next step is to find the consequences of Proposition 4. The 
necessary and sufficient condition for the exactness of a Poisson structure in 
terms of the coordinates is the following: 
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where 

for al l t  = 1 . . . . .  n. 

Z af  [x, x~] = Z OF, of X~- E ol 
I Oxt t,t c3xt Oxt t,~ Ox~ 

( oQ" aF, 1 
[ X , X  Q] = ~j Fj Oxj - Qtj Oxj] 

Using these expressions, we can conclude that the necessary and suffi- 
cient condition in Proposition 4 is true if and only if 

aF-' x~, + x ~ : o  IX, x~] - ~ 
Oxl 

for all i. 
(C) Now, let us assume that 

i jk 

for C~ E R. When Ft = x/i t  is easy to verify that [X, X~] : 0 and the 
necessary and sufficient condition for exactness is satisfied. Hence we have 
the following: 

Proposition 5. Every Lie-Poisson structure is exact. 

Finally, a word about the vanishing of the first Poisson cohomology 
group: One of the conditions in the hypothesis of the theorem is that the first 
cohomology group of (M, Q) should be trivial. In the following we give the 
information available on the vanishing of the Poisson cohomology. As far 
as we know, it is proved that the first Poisson cohomology spaces of the 
following Poisson manifolds are trivial: 

(1) A symplectic manifold with its first de-Rham cohomology group is 
trivial (Bhaskara and Viswanath, 1988b; Lichnerowicz, 1977). 

(2) The dual of a semisimple Lie algebra with its Lie-Poisson structure 
(Ginzburg and Weinstein, 1992). 

(3) The dual group of a compact semisimple Poisson-Lie group (Ginz- 
burg and Weinstein, 1992). 
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